Chapter 7 Color Management
7. Colour Management

This chapter describes the concept of colour management, how to set up the appropriate settings in SilverFast, and how to calibrate your scanner to get precise colours.

7.1 Colour Management 413

7.2 Calibration of your Scanner using SilverFast IT8 Calibration 433

7.3 Addendum 442

7.4 Index 460

7.5 Glossary 482
7.1 Colour Management

Introduction

In the past getting professional results with colour reproduction was only achieved by highly educated professionals. There have been two major reasons for this:

1. Devices for colour reproduction demanded high investments
2. Operation of devices was complicated - complex Know-How was necessary.

Luckily the above mentioned reasons are not valid any more today, because the devices needed as, scanner, PC, printer have become affordable for almost everyone. Also operation has become easy with intelligent software and colour management matured.

Objective of Colour Management System (CMS)

Professional workflow without colour management is not conceivable any more today. To save time and money it is desired to see the result of the final scan on the monitor or printer already on the preview. Since every input- and output-device has its own colour gamut, one cannot assume colours to be consistent.
What is an ICC Profile?
An ICC profile characterizes the colour space behaviour of a device. An ICC profile is a data file and will be used to calibrate the device.

What is IT8?
IT8 is an industry standard test-form designed to measure the performance of input devices and generate ICC profiles.

This is where a CMS becomes relevant. A dedicated ICC profile has to be generated for every input- and output device describing their colour space behaviour. Within the workflow the colour management system compares two profiles, that of the data sender, i.e. a scanner, with that of the data receiver, i.e. a monitor, and calculates a relation for the conversion, which will translate the image data into the right colour impression.

Objective of the SilverFast Colour Management
SilverFast differs from the majority of scan software by its functional power. With reference to colour management SilverFast offers three significant functions:

1. Automatic Matching with Photoshop
 The high level of integration of SilverFast’s architecture into the Adobe Photoshop 5 architecture, assures matching of the SilverFast preview with the final result in Photoshop. This is a very important highlight of SilverFast, because only this function makes sure that the user can predetermine (and control) his final result from the SilverFast preview.

2. Safe IT8 Calibration (optional) with ICC Profiler
 With SilverFastAi you can create a dedicated ICC profile for your scanner so your scanner can be used within the colour management workflow. LaserSoft Imaging AG offers (optional) IT8 calibration for all full versions of SilverFast.
 SilverFast’s IT8 calibration is integrated into the SilverFast application in such a way excluding any possible mis-operation.

3. Individual Colour Control with Selective Colour Correction
 SilverFast’s selective colour correction enables the user to change individual colours independently on the SilverFast preview. Controlling the colours of the final result at a very professional level without trial and error and integrated with the colour management, is a real boon for any level of user.
SilverFast Colour Management

SilverFast

Scanner

IT8-Calibration

Selective Colour Correction

SilverFast Preview

Operating System

Monitor

ColorSync ICM

Adobe Photoshop

Matching
Obviously there are limits to the ability to display the same data on different devices the same way. The different colour spaces have varying dimensions, i.e. displaying different amount of colours. Also the colour shades they can display are varying. This is resulting in colour deviations from the conversion. The colour space “sRGB”, which Photoshop offers as a default colour in its set up is very small, so that even the small colour space of a printer will not be properly rendered. sRGB colour space is still big enough for any monitor Monitor making sRGB a suitable colour space for the internet. For any documents containing images, which have to be printed, sRGB is not suitable. Use Apple RGB or Adobe RGB instead.

SilverFast offers different possibilities for work flow integration. On the system level under ColorSync (Mac) or ICM (Windows98/2000/XP), or in with integration into the application - in general as realized with Photoshop. CMYK output can already on the preview be checked by SilverFast’s softproof function.

Note!
Do not select sRGB as your default colour space in Photoshop if you intend to do colour reproduction with printing.

Comparing the colour spaces
Shown is a projection of the colour spaces on to a surface. The „curved triangle“ represents the L*a*b* colour space, which contains all visible colours.
The CMS Dialogue

Clicking on the “Options…” button in the "General“ palette brings you to the basic settings dialogue. Among others you will find the CMS card, where you can adjust the colour management settings.

The “CMS” Palette has Four Different Sections

1. Colour Management
 Here you can define whether and how SilverFast will communicate with its imaging functions and the different devices (scanner, digital camera, monitor, printer).

2. Profiles for ColorSync (ICM)
 In case you have chosen ColorSync (Windows: ICM) as your preferred colour management system, you have to define the in- and output profiles for the different devices here.

3. Embedded ICC Profiles
 Here you will define whether SilverFast will embed a profile into the output data in order to render colours on another output device correctly at a later instant.
 The name of the embedded profile in the current image is also displayed in SilverFastHDR... -DC...

4. Plug&Play CMYK
 When using P&P CMYK you have to chose a separation ICC (CMYK) output profile to separate your images for the printer.
1. Colour Management

Scanner -> Internal

Here you define how your scanner’s colour space will be matched to your system. You decide whether the original scan will be transferred to the imaging application with accurate colours.

<NONE>: You renounce matching of the scanner colour space to the colour space of the imaging software. Colours on the monitor may deviate from the image sample.

ColorSync / ICM: You decide to integrate the scanner into the operating system’s colour management. By selecting the right ICC profile images will be scanned colour-exact. With SilverFast’s IT8 calibration you can generate a profile describing your scanner (your scanner’s colour gamut).

Internal --> Monitor

Here you define whether and how the monitor is matched to your system. You have to make sure that the work flow is consistent with the colour settings in your imaging application (e.g. Photoshop).

<NONE>: Data will be passed on to the monitor without any matching. You do omit colour management. Specially with Photoshop 5 it is very likely, that the SilverFast preview will deviate significantly from the results in Photoshop.

Automatic: You rely on Photoshop to do the matching to your monitor. It is advised, to set the same colour space (e.g. Adobe RGB) under “Profiles for ColorSync (ICM)” in the field “internal”, you have defined inside Photoshop. Otherwise the colour of the scan data could deviate. Since the Twain-standard does not support such functions, it is not available with the SilverFast Twain-module!
ColorSync / ICM: You are integrating the monitor into the OS's colour management. The appropriate ICC profile for your monitor will be required. More sophisticated monitors get one supplied on disk or CD, if not, you might get it through the internet from the manufacturers web site, last resort would be to create one with a spectro-photometer. Adobe Photoshop 5 enables you to do your own monitor calibration (ICC profile). For this, utilise the installed Photoshop tool „Adobe gamma“ or, as a professional solution, use respective measurement tools.

Internal ->Output

Here you can define what type of data the printer will get from SilverFast. Data to be transferred to the imaging application (e.g. Photoshop), can be in different formats. CMYK- and RGB-files can have profiles embedded, so the data will be matched to the printer's colour space accordingly.

RGB: You can output data in RGB-data format. This setting is recommended for users having no Postscript- but other printers or have no printer ICC profile, or for those using their scans merely for internet- or multimedia projects.

ColorSync /ICM: You are integrating your printer into the OS's colour management. The appropriate ICC profile for your printer will be required.

Lab CIE-L*a*b* is a device-independent colour space, representing all visible colours. Colour differences are not rendered very detailed, and many colours cannot be displayed on a monitor (see also graphic in introduction: the “curved rectangle” represents Lab).

P&P CMYK: High quality system to get CMYK data directly from the 4-colour separation built into SilverFast. To get precise colours it is vital to select the same CMYK colour space in Photoshop, (defined by the same ICC profile), as in SilverFast.
2. Profiles for ColorSync (ICM)

Only when you have chosen ColorSync (ICM) for colour management, you will have to select under “ColorSync profiles” the appropriate profiles for your device here. Exception is with the menu option “Internal --- Monitor” which has to have an ICC profile allocated to under “Internal”.

Scanner (Reflective), Scanner (Transparency)

Here you allocate the appropriate (input) scanner profiles, which you have created with SilverFast or you have received from the scanner manufacturer. The profiles generated by SilverFast have the following naming convention:

SF_R (Scanner name) or SF_T (Scanner name)

Where the “R” stands for reflective, and the “T” for transparency. In brackets after these again are the scanner names. Profiles of hardware manufacturer do not follow standard structure. You will mostly find the name of the device where the file-suffix is „.icc“ or „.icm“, does not have any significance, since the internal format is fully compatible.
Internal

The internal colour space is independent from any device connected and is defined by a profile. This defines the colour matching foundation the colour management is building upon. For the majority of users it is advised to select the monitor colour space in order to unburden the computer.

Once you have selected Internal --> Monitor ColorSync (ICM) you have to define the internal colour space by a profile you can select freely. In case you have chosen “Automatic” under “Internal”, select the profile of the application’s internal colour space. The Photoshop plug-in leaves the monitor matching to Photoshop.

Grey

Here you can select a grey profile for greyscale scans, which can also be embedded into the image file.
Output/Printer

The integration of the printer into the colour management is the highlight, but also the part inducing the most difficulties. The scanner’s colour space and the monitor’s are the same in principle – RGB – there may be small differences in size, and the related white points are shifted against each other. The printer behaves differently: the output is not only depending on the inks but also on the paper stock - how is the paper white, how is the paper absorbency. All this information has to be considered by the profile. The modern inkjet printers are equipped with drivers, which generally take these issues into account, but they can not so well be integrated with ColorSync.

After having chosen Internal-->Output ColorSync (ICM) under colour management, you have to select the output profile of your printer or imagesetter here. This profile can be embedded into the file at your request.
“Rendering intent” for ICC-Profiles

“Profiles for ColorSync (ICM)” now has an additional popup menu in the “CMS” tab of the “Options...” dialogue. Now SilverFast’s “Rendering Intent”, which can be utilized for all ColorSync / ICM operations, can be switched on.

A differentiation of the Rendering Intent for various operations (i.e., input, monitor and output matching) is not possible.

Prior to this, SilverFast has utilized the Rendering Intent which was preset in the profile, thus generally “Perceptual Match.”

Instead of this default setting, one of the three other Rendering Intents supported by ColorSync / ICM, such as “relative colourimetric,” “saturation” and “absolute colourimetric” can be chosen.

In comparison, the effect, when choosing “absolute colourimetric” appears to be the most similar to prior behaviour, because of the differences of the Media white points that appear here.

Image data, which has been produced from computer graphics or from renderings might require adaption of the Rendering Intent.

Rendering Intents

1. Perceptual

Relative colourimetry is used. A reproduction which provides a perceptual or pleasing appearance. This general means both in- and out-of-gamut colours are modified from their colourimetric representation.

Example usage would be for scanned images.
2. Relative Colourimetric
Relative colourimetry is used. For reflection print this means that “y” of paper (paper white) is taken to be “1”. All colourimetric measurements are normalized based on the paper’s colourimetry. A colourimetric reproduction is provided for in-gamut colours. Out-of-gamut colours are mapped to the border of the reproducible gamut. This has the advantage of providing a larger effective gamut so that bright colours will more likely to be in-gamut. It has the disadvantage of sacrificing exact colour matches for printers with different paper white points. Example usage would be for spot colours where a colour reproduction relative to the paper's white is desired.

3. Saturation
Saturation relative colourimetry is used. A reproduction in which saturation is emphasized. In-gamut colours may or may not be colourimetric. Example usage would be for business graphics where saturation is the most important attribute of colour.

4. Absolute Colourimetric
Absolute colourimetry is used. For reflection print this means that “y” (paper white) of printed paper is less than “1”. A colourimetric reproduction is provided for in-gamut colours. Out-of-gamut colours are mapped to the border of the reproducible gamut. This has the advantage of providing exact colour matches from printer to printer. It has the disadvantage of causing colours with “y” values between the paper's white and “1” to be out-of-gamut. Example usage would be for spot colours where an exact colour reproduction is desired.
3. Embedded ICC Profiles

Nowadays, digital images are transferred in various channels onto different computers. To assure the rendering of colours to be true without knowing from where they came and how they have been processed, images get a profile attached which will assure a basis for the colour reproduction process.

If you want to embed the ICC profile into the data, you have to check this field accordingly. You will automatically see which profile will be embedded.

There are four possible origins for an ICC profile:

1. When selecting RGB in the section colour management under Internal->Output the profile originates from the field Profiles for ColorSync --> Internal (e.g. Adobe RGB).

2. When selecting ColorSync (ICM) under Internal--->Output, the profile originates from the field Output/Printer in the field “Profiles for ColorSync”. (e.g. “Euroscale coated.icc).

3. If “P&P CMYK” is selected, it is the profile that was chosen under “Plug&Play CMYK”.

4. When scanning in 48 bit mode and having selected the scanner-profile under “Profiles for ColorSync”, the scanner profile will be embedded into the file.

Working in 48 bit mode?
SilverFastAi can embed a scanner profile (which describes the deviation of the scanner) into the Tiff data during the output of 48 bit data. The scanner deviations can then automatically be corrected during later processing with SilverFastHDR.
4. Plug&Play CMYK
Scanning with Colour Separation

LaserSoft Imaging AG has developed a new solution for high-end separation through Plug&Play CMYK. A new and revolutionary technique solved the problem of separation because the CMYK preview always used to look too different from the final result. Not so with *SilverFast*! The following diagram explains the functionality of the new separation:

1. RGB data is internally calculated to the hardware independent Lab colour space. Monitor settings are taken into account. The monitor should therefore always be adjusted properly (see below).

2. By using *SilverFast separation* as well as the Photoshop separation profiles with help of the ICC profile, we calculate via the Lab format into CMYK.
CMYK Output with Colour Management

Plug&Play CMYK Separation

In order to activate the P&P CMYK separation, proceed as follows:
Select Internal->Output” “P&P CMYK” under the SilverFast colour management dialogue. Under "Plug&Play CMYK" at the bottom of the dialogue, select the appropriate profile.
The ICC-CMYK output profile can by chosen at the base of the CMS dialogue.
Make sure you have loaded the same profile in Photoshop under “Colour Settings -->CMYK setup”.

When leaving the “Options...” dialogue, the button “Scan RGB” will now show “Scan CMYK”.

You may also switch SilverFast from RGB to CMYK by keeping the “CRTL” key pressed and click on the “Scan” button. A small popup window will appear in which the choice can be made. (refer also “Permanent softproof" Pages 87 and 191) If you have not selected a separation table or ICC profile previously , the selection will be grey and cannot be activated.

CMYK Colour Simulation on the Preview (CMYK Softproof)

When the scan button shows “Scan CMYK” , you can switch the preview to CMYK simulation by clicking the softproof button within the densitometer window.
Example Settings SilverFast/Photoshop 5.02

Following is a selection of example settings for the SilverFast CMS dialogue with reference to Photoshop 5.02:

RGB Output under Photoshop without Colour Management

Under „Photoshop File/Colour Settings/ RGB Setup” you have selected e.g.: ➊ Adobe RGB as your working colour space. An ICC profile for this colour space should be exported, so you can select it later in SilverFast. To do this, you can save the settings with „save” into the ICC folder of the operating system.

Now bring up SilverFast (from the Photoshop “Import” menu).

Go to “CMS” under “Options...” in the SilverFast main dialogue.

In „Colour management” select ➋ “Automatic” under “Internal --> Monitor”. Select ➌ “RGB” under “Internal --> Output”. In this case select ➍ <NONE> or “Calibration” under “Scanner->Internal”. You can only use Calibration with SilverFast’s own IT8 calibration. In this example we left it at <NONE>.

Select ➎ Adobe RGB under “Internal” in section “Profiles for ColorSync” as the RGB profile, which you have selected previously in Photoshop.

RGB-Output with Colour Management

You have selected an RGB colour space (e.g.: Adobe RGB) under „Photoshop /Colour Settings/ RGB Setup”. For this you should have an ICC profile defining this colour space in which you can select later in the SilverFast CMS dialogue under “Profiles for ColorSync / ICM” - “Internal”. (If you do not have this profile, use “save” to save the profile into the System’s profile folder.)

Now bring up SilverFast (from “Import menu”)

Go to “CMS” under “Options...” in the SilverFast’s main dialogue.

Select ➊ “ColorSync” (ICM) in the “Colour management” section under Internal --> Monitor and Internal --> Output. Scanner-->Internal is also set to ➋ “ColorSync” (ICM) in our example. This is only possible, if you have a Scanner ICC profile - either from SilverFast’s IT8 calibration, or supplied from the scanner manufacturer. The profiles of the hardware manufacturer are not very accurate, since they are more generalized instead of scanner specific.
Select the scanner profiles (reflective/transparency) of your scanner in section “Profiles for ColorSync” and under Output/Printer your printer profile. Select the profile of the internal system colour space under “Internal”. *SilverFast* assumes your image application supports complete colour management. Please check for this feature in the manual of your software manufacturer.

CMYK-Output with Colour Management (CMS Separation)

You have selected a CMYK colour space under “Photoshop / CMYK setup”. For this you should have an ICC profile you can select later in *SilverFast*. If not, you can save the settings with “save” into the System profile folder.

Now bring up *SilverFast* (from the “Import” menu).

Under Scanner--> Internal in our example it is again <NONE>.

In the section “Profiles for ColorSync” select the same CMYK profile under – Output/Printer, which you have allocated in Photoshop. Under Internal, select the profile of the internal system colour space.
How to save Profiles from Photoshop 5.02

Go to “File”, Colour Settings: RGB Setup. In this dialogue you can prepare your own settings and “Save...” them. Make sure, the profile goes into the right folder, so the System and *SilverFast* can access (load) it.

The path to save it into using **MacOS 9** is:
«..:System folder: ColorSync Profiles» and to save the file into.

The path to save it into using **MacOSX** is:
«...: user : *user-identification* : Library : Color-Sync : Profiles ...».

The path to save it into using **Win98** is:
«C:/Windows/System/Colors»
Note: Profiles in *SilverFast* have a different name from the file name!

The path to save it into using **Windows 2000** is:
«C:/WinNT/System32/Color»
or
«C:/WinNT/System32/Spool/Drivers/Color»

The path to save it into using **Windows XP** is:
«C:/Windows/System32/Color»
or
«C:/Windows/System32/Spool/Drivers/Color»

Attention!
*Under Windows profile descriptions do not correspond to profile name. To make sure you do not unvolentarily select profiles you do not want, move those profiles temporarily out of the Windows / System Colour directly into a new directory (folder).
Example Settings SilverFast / Photoshop 6

In ADOBE Photoshop 6 all colour settings have been integrated into one menu under “Colour Settings”. It seems more complicated on first look but has become clearer structured in reality.

Once set up, you can save all as one setting and if required exchange with other settings.

Please carefully read the corresponding pages in your Photoshop manual.
Example Settings SilverFast / Photoshop 7

In ADOBE Photoshop 7 all colour settings have been integrated into one menu under “Colour Settings”. It seems more complicated on first look but has become clearer structured in reality.

No changes were made to Photoshop 6. The same presets may be used.

Once set up, you can save all as one setting and if required exchange with other settings.

Please carefully read the corresponding pages in your Photoshop manual.
7.2 Calibration of your Scanner using SilverFast IT8 Calibration

SilverFastAi for some high-end devices features a professional tool for calibration and generation of input ICC profiles. The calibration can be made for reflective and transparency positive originals. The calibration is NOT applicable to negative originals. The IT8 calibration is an additional function in the SilverFast software. It is usually an option to the software and therefore has to be activated separately. In certain SilverFast versions - for selected scanners - this function is active by default. In cases where this function must be activated separately, a second CD Rom is required for this procedure - the “SilverFast Feature-CD". The separate activation procedure is described in chapter “SilverFast Feature-CD".

SilverFast has made the process of IT8 calibration very convenient – all steps are performed automatically by the software, just follow the instructions outlined below.

1. Position the IT8 Reference Chart on your Scanner Bed.
 Make sure that the original is positioned inside the scan area of the scan bed. Avoid positioning on areas at the rim of the scanner bed, with some scanners this areas must be kept clear for hardware calibration. The orientation of the IT8 target should be as shown on the left.

2. Click “Prescan” (the Scanner performs a Prescan).

3. Click the button “Calibration"

4. The Window “IT8 Calibration” pops up
 The preview window and the grid will open.
Position the grid in such a way, that all edges are precisely covering the IT8 target.

5. Start the Calibration

If the frame is correctly set up, the calibration can commence by clicking the “Start” button. **SilverFast** will now search for the respective reference file for the chosen IT8 target.

6. Identifying the IT8 target and Searching for the Correct Reference Data File.

6a. **SilverFast** Locates the Reference Data File on Its Own

This usually happens very quickly and runs automatically; the IT8 target is identified by the barcode on its front. **SilverFast** then searches for the respective reference data file, and then launches the calibration.
6b. *SilverFast* cannot find the Reference Data File

The automatic search is started within the installed folder for reference files. In case no matching data file is found, *SilverFast* will make an internet connection to the *LaserSoft Imaging* homepage, and search for the data file there. The reference file will quickly be loaded (size 20 to 30kB). The calibration will then be commenced.

In case no matching reference file is found, an options dialogue is opened. This may occur if the user has chosen a non *LaserSoft Imaging* IT8 target which does not contain barcodes. In this case, please locate the matching reference file manually.

Attention! Each reference data file contains exact information about the IT8 target. This means that for each IT8 target there is only one matching reference file. Not matching the exact targets and reference files will lead to a wrong calibration and false results.

SilverFast software usually installs some known reference files automatically inside the “IT8 Reference” folder, a subfolder of the *SilverFast* folder.

In case the reference file is not installed, you will find more files on the *SilverFast* installation CD, as well as on our website: http://silverfast.com/download/it8calibration-en.html

You can easily identify your reference file by its file name. That name is either a so-called “charge number” or a production date printed either directly on the calibration target or on its protective sleeve or below the barcode.

⚠️ **Make sure your reference file (text file) corresponds to the production charge of your IT8 calibration target (when in doubt, ask target manufacturer)!**

Reference files for original *KODAK* reference targets (image) can be found here: ftp://FTP.Kodak.com/GASTDS/Q60DATA/

⚠️ **Note!** When using IT8 calibration make sure you are only using targets with the correct reference data of the appropriate film manufacturer (e.g. Kodak, Agfa, Fuji).
For calibration in reflective mode, please make sure to select the corresponding reference file for reflective targets. The same applies for transparency calibration accordingly.

Confirm your choice with a click on the “Open” button.

7. Saving the ICC Profile

After the calibration has been completed you will get the message “Calibration has been successful”.

You’ll then have the option to save the result of the calibration as an ICC profile for system-wide colour management. Name and location of the profile can be selected by the user.

Close the dialogue window by clicking “OK”. A new prescan will be launched simultaneously to update the preview.

If the name of the profile just exists you are asked for replacing the just existing older profile.

8. Calibration is now Active.

The IT8 calibration button is now coloured and not longer grey.

Attention!

For a subsequent activation of the calibration, please choose the following colour management settings:

Choose the option “ColorSync” (Windows “ICM”) in the “Scanner->internal” menu.

After this, choose the correct calibration profiles for both transparent and reflective images.

After clicking the “OK” box of the CMS dialogue, the IT8 calibration is activated.
Differences in Calibration Between a Scanner and a Digital Camera

When calibrating a digital camera, several factors have to be taken into account.

The great advantage of scanners is that they work with almost constant conditions: it has an almost constant light source, a fixed colour temperature and a constant distance between the object and the sensor, as well as an absolute array between object and sensor.

This is completely different with digital cameras! Nothing is really constant or standardised, leaving the camera much more flexible and therefore hard to calculate.

An IT8 calibration can be performed but, strictly speaking, lasts only as long as no changes are made to the surrounding factors.

These conditions are generally only found in photo studios, tablet top or during repro photography. They are strongly variable when working with changing light conditions, outdoor photography, etc.

Each deviation of the factors makes the calibration work for only one single photo. If a light source is moved in a photo studio, a new calibration-photo has to be made. In order to do this, simply place a suitable IT8 target on a prepared stand into the photo to be taken, and capture the IT8 target in the photo. Then remove the target from the set, and re-shoot the photograph. By this method, two photos are taken, first one for calibration and after that the actual photograph. Professionals know the procedure with grey card tests – the objective is the same with the steps described here.
Sequence of IT8 calibration

A summarized run through the calibration process in the SilverFast software.

1. Place the IT8 target into scanner and align the target

2. Initiate a prescan

3. Click once on IT8 calibration button (a dialogue opens).

4. In preview window, position the grid exactly over the IT8 target

5. Click once on “Start“ button
 (if a dialogue opens: browse to location of corresponding IT8 reference file and select it. Confirm selection by clicking the “Open“ button.)

6. The IT8 calibration process itself runs automatically. The IT8 dialogue window informs you about the progress of the calibration process.

7. Save the result of the calibration as ICC profile for system-wide colour management.

8. The IT8 calibration process is completed and automatically set active.
Examples Where to Find the Production Charge Number on IT8 Targets of Different Manufacturers.

LaserSoft Imaging target
- 35mm, transparent, charge number is on slide mount.
- 4x5 inch, transparent, sticker on the protective sleeve.
- 5x7 inch, reflective, written directly on the target - bottom right.

Kodak target
- 35mm, transparent, reference is date printed directly on the target and also on the slide mount.

C-ROES target
- 35mm, transparent, reference is date printed directly on the target
- DIN A4, reflective, printed directly on the target - bottom left.

C-ROES target
- DIN A4, reflective, printed directly on the target - bottom right.
Non-calibrated Scan

Calibrated Scan (IT8 Calibration)
Chapter 7.3 Addendum
7.3 Addendum

The following chapter introduces into basic scanning concepts and why a good scanner usually has more than 8 bits per colour.

7.3 Addendum 437-454

Scan concept

Scan resolution 440
Need for more than 256 levels of grey 441
Screening 442
Calculating the scan resolution 443
Which „resolution“ does SilverFast indicate? 444-445
Optimizing scanner resolution for inkjet printers 446-447
Selective colour correction 448
Colour model relations 449
Keyboard shortcuts Mac and PC 450-454

7.4 Index 455-470

7.5 Glossary 471-491
Scanning Concepts

What is a brilliant image? Do I really need very high resolution? What is interpolated resolution?

Imaging has been an abstract science which was practised by well trained professionals. Now with the advent of low price PCs, scanners, printers and digital cameras imaging has become a mass phenomenon.

It is exciting to see how this technology is impacting and changing economy and society. It seems that in an information society imaging is becoming the premier tool to convey ideas and compact messages.

This recognition emphasises the importance to learn more and become familiar with the basic imaging concepts. It will help you to realise your visions and ideas much more quickly!

So for your own advantage do study the following pages carefully!
Scan resolution (dpi)

Some important definitions are clarified here. They form the vital basics of image reproduction theory.

Input Resolution

Resolution is a common expression that refers to the number of finest elements of an image or pixels (pixel is an artificial word made of picture and element), which a sensor, for instance a scanner, can record or distinguish. The unit of measure is in general „dpi“ = dots per inch or „dpcm“ = dots per cm. The higher the resolution, the greater the number of pixels can be scanned.

Optical Resolution / Interpolated Resolution

The optical resolution is also called physical resolution. It defines how many lines or points per inch or cm the CCD and optics of the scanner can clearly distinguish. This can be seen when two lines, being very close to each other, can still be seen as two different lines and not as one. Interpolated resolution is mathematical resolution which, as we will see later, is only important for line art scans, not for greyscale scans. It is calculated via hardware or software.

Greyscale

Greyscales are of very high importance for scanning technology because, in order to reproduce a greyscale image, the scanner has to sense every single image point with a certain depth of data in order to reproduce the different levels of grey correctly. A good scanner should be sufficient to distinguish 256 levels of grey (8 bit), but as we will see on the next page, this is not enough. The scanner should distinguish more than 256 levels of grey internally.
Need for More than 256 Levels of Grey

Images are rarely ideal. Furthermore, the scanner itself can deviate (in itself) while scanning images. Adjusting the highlight–shadow values of an image on a prescan lets a scanner with an internal 10- to 8 bit transformation expand the reduced tonal range (fig. 1) to a full range of 256 levels of grey. By expanding a reduced tonal range with only 8-bit transformation, gaps in the tonal scale are produced where grey values are missing. Detail and sharpness of the image are lost or reduced. This can also happen when the transformation-algorithm from 10- to 8-bits is not optimised. The gaps in the histogram (fig. 2) also called spikes, become clearly visible.

Through an optimised transformation of the expansion of tonal values with 10- or 12-bits in SilverFast, the end result, that is to say, the final scan displays a gapless distribution of grey levels across the entire greyscale (see fig. 4).

The correct adjustment of highlight and shadow, for instance which values on the prescan become white and which become black, has a strong influence on the quality of a reproduction. SilverFast helps locate the brightest and darkest points in two ways: First, the densitometer can be set to CMY% and, by moving across the prescan, indicates where the brightest and darkest points are. Second, the highlight / shadow tool displays the brightest point when the “Ctrl” key is pressed, and the darkest when the “Alt” key is pressed (together with the “Command” key on Mac and the “Alt” key on PC, respectively). For displaying the brightest and the darkest point of the image on the prescan in combination with the highlight/shadow tool, click and hold the white or black square respectively.

Thus, the end points are easily set onto the correct spots in SilverFast (fig. 3).
Screen Resolution (lpi)

In order to reproduce different shades of grey, the printing technology uses the screening technology. A dot matrix is the most economical way to produce shades of grey.

An image dot from the scanner is transformed into a screening matrix (in general a 16x16 Matrix). If a screening dot is black, up to 256 image-setter pixels can be set in a screening cell. In a screen of 152 lpi there are 152 screening dots in a line. The unit of measure lpi (lines per inch) is often confused with printer resolution. The unit of measure for printer resolution is generally dpi (In some countries, lpcm (lines per centimetre) is the unit of measure for the image setter’s resolution as well as for the screening frequency). Once again the units of measure:

- **Printer resolution:** dpi / dpcm (lpcm)
- **Screening resolution:** lpi / lpcm

The images on the left show the effects of different scanner and screening resolution. Image 1 shows a normal scan with 220 dpi printed on a laser printer with 120 lpi. Image 2 shows an enlargement of a selection. Image 3 shows a scan with very low resolution (under 72 dpi) printed with 120 lpi. Image 4 shows a scan from image 2 printed with a line screen of only 20 lpi.
Calculating the Scan Resolution

The best possible scanning resolution is very important and should be well thought out “the more the better” does not always hold true!

To Clarity:
Shades of greyscale images are converted into dots made of a 16x16 matrix when imaged on to an image setter. Ideally, a screening dot contains 256 individual pixels. When a photograph is scanned and printed onto a 150 line screen, each greyscale dot is converted into a 16x16 matrix. An image setter with a resolution of 2540 dpi is just capable of imaging such screening dots. Since there are losses in the process of analog-digital conversion, an additional Q-factor (Q for Quality) is introduced. This factor is generally 1.4, and, with exception, 2.0.

As a result, the following formula for the calculation of the ideal scan resolution may be used:

\[\text{Scan resolution} = \text{output screen} \times 1.4 \times \text{scale-factor} \]

For Example:
The scan resolution for a 150 line screen with a 1:1 scaling-factor has to be calculated.

\[\text{Scan resolution} = 150 \times 1.4 \times 1 = 210 \text{ dpi} \]

The resulting file size for an A4 page for black and white greyscale is 5.77 MB, for colour 17.3 MB.
300 dpi would roughly double the file size. This shows the importance of setting the optimal resolution since memory requirements and processing time increase dramatically.

Automatic Calculation of Optimal Scan Resolution in SilverFast.
The calculation of optimal scan resolution results in maximum quality, less memory load and faster processing. For this very reason the automatic calculation of optimal scan resolution was integrated into SilverFast. Having chosen the quality factor of 1.5, you only have to input the desired output line screen (150 line screen) and the required output size. SilverFast automatically sets the optimal scan resolution for you.
For a 121 line screen for a newspaper and a scale-factor of 50% the calculation is as follows:

\[
\text{Scan resolution} = 122 \times 1.4 \times 0.5 = 85 \text{ dpi}
\]

If you want to double the image size:

\[
\text{Scan resolution} = 122 \times 1.4 \times 2 = 341 \text{ dpi}
\]

The images on the right show, what has been explained earlier: that higher image resolution is not significant for better image quality.

Which “Resolution“ does SilverFast indicate?

In *SilverFast Ai* you can monitor three different aspects of scan resolution:

a) **Output Resolution**: Will be continuously displayed. This represents the resolution, which the image will have after the scan, e.g. in Photoshop. The value is derived from *SilverFast’s* integrated formula, which relates quality factor and output-line screen.

b) **Optical Resolution**: Depressing “Ctrl“ key will display the optical resolution the scanner is using currently. Every Scanner can only use certain optical resolution increments, depending on the hardware. Eg. 300, 600, 1200 ppi, but not 249 ppi. *SilverFast Ai* will always use the next higher hardware resolution, here 300 ppi, and will then interpolate down. This way the full quality is preserved. This way any loss in quality is eliminated.

c) **Interpolated Resolution**: To check whether the scanner does not interpolate “up”, you can depress the keys “Ctrl + Shift“. Now you can see the internally used, “calculated“ or “interpolated“ resolution. Here all values are possible such as 249 ppi from our example above.

Be alerted once the second value (with “Ctrl + Shift“) is higher than the first value (only with “Ctrl“). This indicates the scanner would interpolate “up” and generate new pixels which are not present in the original image. Moderate interpolation up to 1.3 times max optical resolution puts you on the save side normally, depending on the quality of your scanner, of course.
Generally *SilverFast* inhibits “Misuse” by limiting the max resolution to a factor of 2 or 2.5.
Optimum Scan Resolution for Inkjet Printers

In order to print image scans with an inkjet printer without Post-Script and without simulation of offset screens, effectively a few points should be observed already before the scan.

⚠ Please note: You should scan with reference to file size really needed, i.e. Scan size (file size) should ideally reflect the number of pixels needed for the print. Larger than necessary files only congest the computer system and do not lead to a better printing result! All necessary tools to get to ideal file size are built into SilverFast. There are no complex formulas and no conversions required.

In order to get optimum results it is recommended to do an initial test. With this test you will find the optimum resolution for the current printer (the printer connected), with relation to a special paper:

1. In the SilverFast main dialogue the “Quality factor is to be set“ to 1.5 and “Scaling“ is to be set to 100%.

2. The original to be scanned should be a contrasty slide with lots of details or a similar reflective halftone. do not use printed samples from magazines or books!

3. After the preview scan create a small scan frame (eg. 9x6cm) over an area with significant details.

4. The image will be optimized as usual: image auto-adjust, Gradation, colour correction. Under “Filter“ the “Unsharp Masking“, if active should be switched off.

5. In the SilverFast main dialogue (“Frames“ panel) under “Screen“ input a value of 20 lpcm. In the same dialogue input “20 lpcm“ as well as the file size as “Name“ for this scan frame.

6. While depressing the “Alt“ key and dragging the scan frame will be copied. Position the new scan frame exactly onto the same position as the first frame.
7. For the new scan frame input “30 lpcm” under “Screen”. Then input “30 lpcm” for “name”.

8. Now repeat steps 6 to 7 for the values “40 lpcm” until “80 lpcm”, with steps of 10 in between.

9. In the main dialogue change to the “General” panel and select “batch Mode (File)” under “Scan Mode”.

10. Start processing of the seven scan frames with clicking on “Scan Batch”. A dialogue will come up asking you for a destination for the final scans.

11. When the seven scans are done, mount them in a layout-program onto one paper, e.g. letter format. It is important that all scans get exactly the same frame size! Mark each scan frame with the full name of the image file respectively!

12. The test chart can now be printed and evaluated.

13. Evaluation of results:
 Which image, resp. which “screen”, will get the best result with the current paper?
 Where can you distinguish fine resolution just about?
 What is the optimum screen? Notice how rapidly file size increases with higher line screens!
 In reality the limit for recognizing any enhancement in print quality will be between 40 to 50.
 It will be interesting to see the comparison print of the same image file on different paper or other printers.
Selective Colour Correction

Colour in Colour Correction

Selective colour correction was developed for high-end scanners, and consists of a changing colours within a colour. The colours red, green, blue, cyan, magenta and yellow are corrected. The cast colour can be reduced and the current colour can be increased. The cast colour of red is cyan, of green is magenta, of blue is yellow.

The diagram above shows the relationship between colours. The primary colours red, green, and blue have opposite colours as their complementary colours. The neutral tones between black and white lie on a grey axis.
Colour Model Relations
The following model shows the relation between primary colours and contaminating colours (complementary colours). In the selective colour correction these colours can be increased or decreased.

![Colour Model Diagram]

Contaminating Colours
Contaminating colours are those which lead to a “dirtying” also referred to as a “blackening”. The colours lose their brilliance and tend to grey. The following table shows the relations:

<table>
<thead>
<tr>
<th>Colour</th>
<th>Contaminating colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Cyan</td>
</tr>
<tr>
<td>Green</td>
<td>Magenta</td>
</tr>
<tr>
<td>Blue</td>
<td>Yellow</td>
</tr>
<tr>
<td>Cyan</td>
<td>Magenta / Yellow</td>
</tr>
<tr>
<td>Magenta</td>
<td>Cyan / Yellow</td>
</tr>
<tr>
<td>Yellow</td>
<td>Magenta / Cyan</td>
</tr>
</tbody>
</table>
Keystrokes in *SilverFast*

<table>
<thead>
<tr>
<th>Action</th>
<th>Macintosh</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of keyboard shortcuts and their respective counterparts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td>Command-/Apple-Key</td>
<td>–</td>
</tr>
<tr>
<td>Alt</td>
<td>Opion-/Alt-Key</td>
<td>Alt-Key</td>
</tr>
<tr>
<td>Shift</td>
<td>Shift-Key</td>
<td>Shift-Key</td>
</tr>
<tr>
<td>Ctrl</td>
<td>Control-/Ctrl-Key</td>
<td>Control-/Ctrl-Key</td>
</tr>
<tr>
<td>Return</td>
<td>Return-/Enter-Key</td>
<td>Return-/Enter-Key</td>
</tr>
<tr>
<td>Esc</td>
<td>Escape-/Esc-Key</td>
<td>Escape-/Esc-Key</td>
</tr>
</tbody>
</table>

ScanPilot / ImagePilot

<table>
<thead>
<tr>
<th>Action</th>
<th>Macintosh</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply / Execute current tool</td>
<td>Return</td>
<td>Return</td>
</tr>
<tr>
<td>Scroll / Next action</td>
<td>Up and Down arrow</td>
<td>Up and Down arrow</td>
</tr>
</tbody>
</table>

Prescan, scan / Preview, process

<table>
<thead>
<tr>
<th>Action</th>
<th>Macintosh</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop prescan / stop scan</td>
<td>Command+Period</td>
<td>Strg+Period</td>
</tr>
<tr>
<td>Switch to other colour space</td>
<td>Ctrl+Click on</td>
<td>Right mouse button+Click on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scan-/Process-button</td>
</tr>
<tr>
<td>Zoom</td>
<td>Ctrl+Click&Drag</td>
<td>Ctrl+Click&Drag</td>
</tr>
</tbody>
</table>

Image frames

<table>
<thead>
<tr>
<th>Action</th>
<th>Macintosh</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate frame</td>
<td>Alt+Click&Drag</td>
<td>Alt+Click&Drag</td>
</tr>
<tr>
<td>Entire Window in one frame</td>
<td>Command+A</td>
<td>Ctrl+A</td>
</tr>
<tr>
<td>Delete frame (extended keyboard)</td>
<td>Delete</td>
<td>Delete</td>
</tr>
<tr>
<td>Delete frame (normal keyboard)</td>
<td>Alt+Backspace</td>
<td>Delete</td>
</tr>
<tr>
<td>Frame reset</td>
<td>Reset-button</td>
<td>Reset-button</td>
</tr>
<tr>
<td>Copy settings of one frame into an other frame</td>
<td>Alt+Click on active frame, then into target frame</td>
<td>target frame</td>
</tr>
</tbody>
</table>
Action

<table>
<thead>
<tr>
<th></th>
<th>Macintosh</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-adjust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resetting auto-adjust</td>
<td>Alt+click on Auto-adjust button</td>
<td>Alt+Click on Auto-adjust button</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highlight / shadow / midtone tool (HSM-tool)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set highlight</td>
<td>Click on white triangle of HSM-tool</td>
<td></td>
</tr>
<tr>
<td>Set midtone</td>
<td>Click on pipette of HSM-tool</td>
<td></td>
</tr>
<tr>
<td>Set shadow</td>
<td>Click on black triangle of HSM-tool</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple attempts with pipette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hold down pipette for multiple attempts (only highlight, shadow)</td>
<td>hold down Alt</td>
<td>hold down Alt</td>
</tr>
<tr>
<td>Reset highlight / shadow</td>
<td>Alt+Pippette of HSM-tool</td>
<td></td>
</tr>
<tr>
<td>Display brightest point</td>
<td>Click on white square</td>
<td>F6</td>
</tr>
<tr>
<td>Display darkest point</td>
<td>Click on black square</td>
<td>F5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show result histogram</td>
<td>Alt in the histogram dialogue</td>
<td>Alt in the histogram dialogue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective colour correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select all colours</td>
<td>Command+A</td>
<td>Ctrl+A</td>
</tr>
<tr>
<td>Select additional colour</td>
<td>Shift+Click into prescan</td>
<td>Shift+Click into prescan</td>
</tr>
<tr>
<td>Select additional colour column</td>
<td>Shift+Click on LED below column</td>
<td>Shift+Click on LED below column</td>
</tr>
<tr>
<td>Show inactive mask area</td>
<td>F7</td>
<td>F7</td>
</tr>
<tr>
<td>(dialogue must be closed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset all parameters</td>
<td>Shift+Click on Reset-button</td>
<td>Shift+Click on Reset-button</td>
</tr>
<tr>
<td>Frame reset</td>
<td>Alt+Click on Reset-button</td>
<td>Alt+Click on Reset-button</td>
</tr>
<tr>
<td>Undo/Redo last operation</td>
<td>Command+Z</td>
<td>Ctrl+Z</td>
</tr>
</tbody>
</table>
Opening a dialogue window
Zoom in preview Command+1 Ctrl+Alt+1
Image auto-adjust Command+2 Ctrl+Alt+2
Histogram dialogue Command+3 Ctrl+Alt+3
Gradation dialogue Command+4 Ctrl+Alt+4
Global colour correction Command+5 Ctrl+Alt+5
Selective colour correction Command+6 Ctrl+Alt+6
Expert dialogue Command+8 Ctrl+Alt+7
Leave dialogue/Leave SilverFast ESC or Command+Period ... ESC or Ctrl+Period
Start scan / Process image Return/Enter Return/Enter

Main dialogue
Undo/Redo last action Command+Z Ctrl+Z
Show current hardware resolution Ctrl F5
Show calculated scan resolution Ctrl+Shift F6

 Masks in SilverFast SRD
Hide mask frame Ctrl Ctrl
Shade inactive mask area Alt+Ctrl Alt+Ctrl
Reduce mask Alt Alt
Extend mask Shift Shift

JobManager
Select all job entries Command+A Ctrl+A
<table>
<thead>
<tr>
<th>Action</th>
<th>Macintosh</th>
<th>Windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLT (virtual light table)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context menu in album and overview</td>
<td>Ctrl+Click</td>
<td>Right mouse</td>
</tr>
<tr>
<td>Preview mode, full screen,</td>
<td>Command+Shift+F</td>
<td>Ctrl+Shift+F</td>
</tr>
<tr>
<td>fit to screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display EXIF infos</td>
<td>Command+I</td>
<td>Ctrl+I</td>
</tr>
<tr>
<td>Album, mark all images</td>
<td>Command+A</td>
<td>Ctrl+A</td>
</tr>
<tr>
<td>Album, delete image</td>
<td>Command+backspace</td>
<td>Ctrl+backspace</td>
</tr>
<tr>
<td>EP (extended printing dialogue)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop opposing edges / corners</td>
<td>Shift+Click&Drag</td>
<td>Shift+Click&Drag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>simultaneously</td>
</tr>
<tr>
<td>SilverFast Launcher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminate</td>
<td>Command+Q</td>
<td>Ctrl+Q</td>
</tr>
</tbody>
</table>
Symbols

%lt 274
%lx 274
%nW 274
%oN 274
± 3 f-stops 220
1:1 copy function 406
12 colour sectors 158
16 bit HDR grey scale 72
1 bit 215
24 bit 72
256 levels of grey 445
3/4 tone 156
35 mm slides 67
3x3 pixels 53
48 bit 72, 425
48 bit HDR colour 72, 339
6 colour sectors 158
6x4.5 43
6x6 43
6x7 43
6x9 43
90° steps 47, 303

A

a/b channel 293
AACO (Auto-Adaptive Contrast Optimization).
See SilverFastAACO
ACR = Adaptive Colour Restoration. See SilverFastACR
Activate a scan frame 89

Active scan frame 39
Activity indicator 46
ADF / Document feeder 70, 237, 238
Adjust Images automatically 340
Administrator 28
Adobe RGB 416
Advanced colour cast removal. See MidPip4
Album folder 66, 259
Album palette 265, 267
Album window 278
Anti-Aliased 54
Appearance manager 19
Apple RGB 416
Apply 93
APS film 41, 235, 236, 237
APS film feeder 42
APS overview 235
Index scan 235
ASA/ISO value 221
Aspect ratio 78
Auto-adjust 108, 114, 137, 138, 220
Auto-adjust and colour cast preservation 118
Auto-adjust and colour cast removal 117
Auto-adjust and threshold 119
Auto-adjust reset 118
Auto threshold highlight 121
Auto threshold shadow 121
Colour of auto-adjust button 114
Auto-focus 250
Auto-gradation 108
Auto-threshold for highlights and shadows 59
Auto contrast 61
Automatic density 40
Automatic document feeders (ADF) 237
Automatic orientation detection 67
Automatic prescan 94
Automatic when ADF 61
Automatic with ADF 238
Auto palette 59
Auto pipette middle factor 60
Auto sharpen 199

B

b/w film 232
Barcode 435
Baseline optimised 245
Batch mode 70, 87, 238
 Batch scan 86
 Interruption of a batch 238
 Setting of an image number in the batch 244
Batch mode (File) 87, 238
Batch scans 87
Black and White negatives or slides 394
Black and white point 42
Blind colour 65
Blue dot 277, 287
Bright contour 204
Brightest point 59, 131
 Displaying Brightest and darkest point of an image 131
Brightness 149, 293
Browser 266
Brush 167, 382

C

C41 process 394
Cache 259, 260, 263, 278
 Cache size 66
 Deleting the cache memory 285
 Green arrow 263
 Red square 263
Calibration of your scanner 433
Calibration profile 64
Camera Storage Media 271
CCD 217
CCD noise 42
Chapter 1: Installation 17
Chapter 2: Overview 35
Chapter 3: Presets 49
Chapter 4: Prescan Design 81
Chapter 5: Tools 105
Chapter 6: Special Functions 191
Chapter 7: Colour Management 411
Choose plug-in folder 30
Clone tool 44, 401
 Auto texture 403
cm 52
CM12 175
CM6 175
CMS (Colour Management System). See Colour management
 CMS dialogue 417
CMS palette 62, 93, 417
 Colour management 417, 418
 Internal --> Monitor 418
 Internal -->Output 419
 Scanner --> Internal 418
 Embedded ICC profiles 417, 425
Plug&Play CMYK 417, 426
 CMYK Output with Colour Management 427
 Scanning with Colour Separation 426
Profiles for ColorSync (ICM) 417, 420
 Internal 421
Index

Output/Printer 422
Rendering Intent 423
Scanner (Reflective) 420
Scanner (Transparency) 420
CMYK colour simulation 91, 427
CMYK output 427
CMYK Values Visible on the Prescan 195
ColorSync 62, 114, 262, 416, 425
Colour balance 108, 155, 156, 157
 Resetting colour balance 156
Colour cast 130, 137, 138, 230, 231, 292
 Automatic colour cast removal 137
 Colour cast preservation 118
 Colour cast removal 59, 117
 Manual colour cast removal 138
 Preserving a colour cast 130
Colour channel in histogram 136
Colour circle 160, 164
Colour filter (blind colour) 65
Colour in colour correction. See auch Selective colour correction
Colour management 413
 Comparing the colour spaces 416
 Introduction 413
 Objective of Colour Management System 413
 Objective of the SilverFast Colour Management 414
Colour matrix 12 158
Colour matrix 6 158
Colour model relations 453
Colour models 194
 CMY 194
 CMYK 194
 Colour model RGB or CMY 53
 HSL 194
 K 194
LAB 194
LCH 194
RGB 194
Colour negatives 394
Colour separation 426
Colour space compression 143
Colour temperature 292
Colour tint 261, 292
Colour to Grey Conversion 180
Complementary colours 452, 453
Compression of colours 426
 Example for colour space compression 143
Concept of optimising images 112
Contact sheet 270, 282
Contaminating colours 453
Context menu 195
Contrast 149, 293
Copy a scan frame 90
Copyright 3
Credits button 32
Curve points 151
 Control of the curve points 152

D
Dark contour 203, 204
Darkest point 131
 Displaying darkest point 132
DCPro. See SilverFastDC...
DCProStudio. See SilverFastDC...
DCS file format 243, 245
 Multi file 245
 Single file 245
DCVLT. See SilverFastDC...
Default dialogue. See Options... dialogue
Defaults. See Options… dialogue
 Standard defaults 59
Default setting 54
Delete a scan frame 89
Delete cache / Delete images 285
Delete frame 42
Deleting Images 285
Densitometer 101, 123, 134, 145, 186, 194
 Before and after values 194
 Densitometer is displayed in the gradation and
 the selective colour correction dialogue 194
 Densitometer palette 39, 91
 Densitometer radius 53
 Densitometer reading and gradation curves 186
 Displaying the densitometer measure points with
 the histogram and gradations dialogues 145
Multiple densitometer 145
Selecting the colour space in the densitometer 146
Switching the densitometer 195
 Transfer of the brightest/darkest point to the mul-
 tiple densitometer 146
Descreening 205, 207
 Automatic descreening 205, 206
 Automatic descreening (intensive) 205, 206
 Before-After view 207
Moiré 205, 208
 Preview button 207
USM & Descreening 205, 209
Device 69
Dialogue overview 39
Dialogue window 37
 Macintosh 37
 Windows 38
Difference between ScanPilot and ImagePilot 110
DIGITAL ICE technologies 41, 232, 371, 375

Displaying a processed image 56
Document feeder 103, 238
Dot screen 76
dpcm 446
dpi 446
Drag & drop 80, 279
Dust- and scratch removal. See SilverFastSRD
Dust and scratch removal 41

E
E6 process 394
Eject button 41
Embed ICC profiles 64
Embed profiles 64
Enhanced print dialogue. See PrinTao
Evening 74
EXIF 266, 268, 277, 284, 298, 314. See Silver-
FastDC...
Expert dialogue 108, 187
 Equal parameters for a row 187
 Exporting the image parameters as a text file 189
 Fourth column for grey values 188
SF Statistic.txt 189
 Showing / Hiding the curve window Dialogue 188
Expert mode 274, 386
Export Album 271
Export images 287
Exposure 66, 292
Extended print dialogue. See PrinTao

F
Feature CD 32
File browser 299, 300
File format 87, 241, 243, 247, 353
Reading different file formats 247
Saving different file formats 241
File name 39, 76, 354
File size 76
Film holder 43, 235, 237
 APS adapter 235
 Automatic document feeders (ADF) 237
Batch scans 237
Eject 236
Film Strip Holder 236
Holder transport 43
Middle formats 43, 237
Panorama formats 43, 237
Film scanner 239, 347, 357, 358
 Film scanners with a magazine 239
 Area 240
 Holder transport 239
 Overview dialogue 240
JobManager 347
SilverFastJobManager workflow with film scanners 357
Film strip holder
 Adjusting the Film Strip Position 237
Film strip position 42, 237
Filter 39, 73, 199
 Descreening 73
 GANE 73, 211
 USM 73, 199
FireWire 21, 80
Fixing width and height 76
Flash cards 271
Flip 47, 282
Focus 41, 249
 Auto-Focus 250
 Focus preview 251
 Focussing the Scanner 249
Focus switch 249
 Manual Focus 250
 Manual focus with preview 251
FOGRA 298
Frame deletion 42
Frame Inset 61
Frame number 86, 94
 Frame number indicator 42
Frame palette 39
Frame sets 70
Frames on Prescan 85
Full screen preview 66

G
Gamma gradation 55
 Gamma Gradation for HDR Output 55
 Gamut Expected in 48bit/HDR 55
Gamut 196
 Gamut Warning 196
GANE (Grain- and Noise Elimination) 211
 Activating GANE 212
 Before-After preview 211
 Expert Mode 213
 Intensity 213
 Threshold 213
General palette 39, 69
Global colour correction 108, 155
Gold tones 74
Gradation 108, 147, 155
 Adjusting gradation curves 149
 By entering values into the input fields 149
 By loading saved gradation curves 149
 By moving the curve points 149
 By using the sliders 149
Colour channels 150
Comparison of the different gradation dialogues 111
Deactivating gradation curve points 151
Deleting a gradation curve 150
Extended gradation curves 153
Gradiation curves 147
Hottrack gradation 152
Loading Photoshop gradation curves 153
Range selection 156
Reset 156
Resetting deactivated curve points 151
Saving a gradation curve 150
Selecting gradation curves 153
Grain- and Noise Removal 211
Green dot 277
Greyscale 444, 447
Grid frames 326

H
H-S cast 74
Halftoning 65
HDR. See SilverFastHDR...
Help button 40
Help lines 326
Highlight 108, 149
 Preserving specular highlights 130
 Setting highlight 123
 Specular highlights 130
Highlight / Shadow tool 123, 132
 Highlight / Shadow reset 124
 Highlight / Shadow with offset 123
 Preserving a colour cast with the highlight / shadow tool 130
Highlight and shadow offset 129
Highlight Cast 74
Highlight Offset (Brightest Point) 59
Highlights 141
Highlight triangle 121
High resolution prescan 54, 97, 100, 184
HiRePP (High Resolution Picture Performance). See SilverFastHiRePP
Histogram 108, 133, 141
 Channel selection 136
 Compressing colour space via histogram 144
 Compression of colour space in histogram 141
 Histogram-Diaglogue in SilverFast...SE versions 133
 Optimising a histogram manually 139
 Three-part histogram 135
 Staggered three-part presentation 136
 Standard mode 135
 Three-part parallel presentation 135
Horizontal scaling 76
Hottrack gradation 152
HSL 228
HSL controls 159
 HSL Correction by Sliders 161
Hue 160, 161, 228

I
ICC printer profile 405
ICC profile 114, 195, 262, 299, 414, 425
 Camera specific ICC profile 262
 ColorSync 262
 Generate an ICC camera profile 262
ICM 262
ICE 232, 371, 375. See DIGITAL ICE technologies
ICM 62, 114, 262, 416, 425
Image auto-adjust 108, 114
Image compression 245
Image mode 71
Image number 244
Image orientation monitor 47
Image overview 348
Image overview dialogue 42
ImagePilot 40, 110
 Prefs button 110
Image settings 409
Image settings dialogue 292
 Brightness (mid-tones) 293
 Colour 292
 Colour-distortion reduction 293
 Contrast 293
 Exposure 292
 Light source 292
 Pipette 292
 Realtime Histogram 293
 Saturation 293
 Settings 293
 Smoothing of luminance 293
 White balance 292
Image type 74
 Image type presets 39
Import 28
Improving the sharpness of artwork 199
inch 52
Index 355
Index scan 42, 235, 348
Info button 40
Input > Internal 62
Input dimensions 39
Installation 17, 18
 Installing SilverFast Plug-in 22
 SilverFast as a TWAIN Module 25
Internal > Monitor 62
Internal > Output 62
Interpolation of scan resolution 54
IPTC 266, 271, 272, 274, 283, 298, 314.
See SilverFastDC...
 Load 283
 Save 283
iSRD 369, 371. See SilverFastiSRD
iSRD (dust and scratch removal with infrared technology). See SilverFastiSRD
IT8 calibration 42, 222, 253, 262, 336, 433
 Barcode 435
 Coloured IT8 button 433
 Differences in calibration between a scanner and a digital camera 437
 Grey IT8 button 433
 IT8 calibration with SilverFastDCPro 336
 IT8 reference folder 435
 IT8 target 337, 433
 Charge number of IT8 targets 439
 Identifying the IT8 target 434
 KODAK IT8 targets 435
 Reference data file 434
 Reference data file 434
 Reference data file not found 435
 Steps of a calibration with SilverFastDCPro 337

J
JM (JobManager). See SilverFastJobManager
Job 344
JobManager 340, 343. See SilverFastJobManager
JPEG 2000 file format 246
JPEG file format 245
 Format 245
Quality 245
JPF 246

K
Keep original resolution 340
Keep output height or width 78
Keep the ratio of height and width 78
Keystrokes in SilverFast 454
Kodachrome film 232

L
L (logarithmic) 154
Lamp brightness 66
Landscape 74
Lasso 167, 382
Layers 159, 175, 383
 Adding layers 176
 Delete 177
 Moving layers 178
 Stapling order 178
 Switch 177
Less auto sharpen 199
Levels 122
License 4
Light contour 203
Light source 292
Limit gamma slope 66
Linear midtone 154
Line art scans 215
 Threshold 216
 Zooming for optimum threshold definition 216
Lock 39, 77, 79
Logarithmic midtone 154
Lpcm 446

lpi 446
Luminance 160, 161, 228, 293

M
Macintosh 19
Mac OS 9.2 19
Magazine (for slides) 239
Magnifier 97, 277. See Zoom
Manual focus 250
Mask edge size 57, 169, 175
Masks 57, 159, 167, 175, 382, 397
 Changing a Mask 170
 Delete 172
 Inverted mask 383
 Move 171
 New mask 167
 No mask 171
Matrix 200
Maximum cache size 66
Measurement units 39
Meta data 311, 314
Middle format 43
Middle formats 237
MidPip4 126, 145
 Adjusting neutral values to a determined density 128
 Alert messages 128
 Delete neutral points 128
 Editing the MipPip 127
Midtone 108, 141, 149, 154, 156
 Linear and Logarithmic Midtone 154
 Setting midtone 125
Minimize window 39
Mirroring 40
Flip 47
Moiré 205
More auto sharpen 199
Moving of a scan frame 90
Multiple densitometer 134, 196
 Transfer of the brightest/darkest point to the multiple densitometer 197
Multiple FixPip 101, 134, 186, 196
Multiple Frames 85
Multiple neutralising pipette. See MidPip4
Multiple sampling 42, 217
 Multi-Sampling with Auto-Alignment 217
Multiple scan frames 85
Multiple scanning 42
Multiple slide scanner settings 239

N
N (normal) 154
Naming of scan frame 242, 243
Navigation window 266
Navigator 299, 300
Navigator palette 97
Neg.Direct 70
NegaFix 219. See SilverFastSC2G
 Auto tolerance 219, 224
 Components 234
 Expert dialogue 219, 223
 Automatic mask 226
 Changing the film gradation curves 229
 Curves menu 224, 229
 Expansion Menu 224
 Expansion menu in detail 226
 HS and L dialogue 225
 HSL colour space 228
 Magnifier 224, 229
 Neutralizing colour casts 230
 Producing a colour cast deliberately 231
 Reset 227
 RGB-CMY switch 227
 Save 227
 Save the newly created profile 225
 Saving changes as a new profile 231
 Set neutral grey 225
 Setting orange mask highlight shadow points 228
 Smoothen 229
Exposure 219
Film speed 219
Film type 219
Importing film profiles 223
Manufacturer 219
Negative. See SilverFastNegaFix
Neutral point 126
 Deleting neutral points 128
Neutral values 126
Night 74
Noise 217
Non-PostScript-Printer 422

O
Offset 129
Open button 255, 335
Open VLT at start up 56
Options… dialogue 53
 Auto Defaults 59
 CMS (colour management) settings 62
 General Defaults 53
 Special Defaults 65
Options parameter 54
Orientation of the image 47
 Orientation window 47
Original 70, 103, 238
Original height 76
Original width 76
Output dimensions 39
Output file size 39
Output height 76
Output screen 39
Output width 76

P
P&P CMYK 62, 91, 417, 419, 425, 427
 Softproof 91
Panorama captures 43, 237
Permanent Softproof 195
Permanent softproof 91, 427
Photoshop 5.02 428
Photoshop plug-in 22
 Launching and activating SilverFast via Photoshop 28
Pica 52
Picture 69
Pipette 60, 101, 108, 145, 292
 Fixed Pipette 101, 145
Pixel 52
Pixel lock 79
Pixel zoom 47, 201
Plug&Play CMYK 64, 93, 427
Point 52
Polygon 167, 382
Pos./Neg. 219
Positive/Negative 70
PostScript-Printer 422
PowerMac 19
Preferences 51, 110
Prefs 110. See Preferences
 Prefs file 85
Prescan 83
 Aborting Prescan 184
 High resolution prescan 184
 Prescan concept 83
 Prescan design 84
 Prescan faster 65
 Prescan launch button 39
 Prescan mirroring 40
 Prescan monochrome 65
 Prescan rotation 40
 Prescan without auto focus 67
 Saved prescan for reflective and for transparency 84
Preserve settings for a new image 57
Presets 259, 267
Preview in fullscreen 43
Preview mode 270
Primary colours 452, 453
PrinTao 266, 270, 295, 298, 299, 405, 406
 1:1 copy function 406
 Adapt to page size 309
 Add button 302, 306, 309
 Additional pages 306
 Centre image in printout 302
 Centre on page 309
 Changing the image clipping within the image frame 305
 Click-dragging 308
 Composing images and texts 328
 Context menu 331
 Control buttons 309
 Copyright notes 317
 Create freely positionable text framework 316
 Crop image 304
 Cut image 309
 Cut image option 303
 Delete button 309
Proportional scaling 78

Q
Q-factor 447. See Quality factor
Quality factor 39, 76, 447
QuickTime movie 26, 34, 43
Quit SilverFast 39

R
Radius of densitometer 53
RAM 19, 24
RAW data format 72, 259
 Conversion of RAW data files 263
 CR2 (Canon) 259
 CRW (Canon) 259
 CS (Sinar) 259
 DC2 (Kodak) 259
 DCR (Kodak) 259
 DNG (Adobe) 259
 ERF (Epson) 259
 Green arrow 263
 HDR (Leaf) 259
 Internal RAW data conversion profile for your Camera 261
 K25 (Kodak) 259
 KDC (Kodak) 259
 Linear conversion of the RAW data 261
 MOS (Leaf) 259
 MRW (Minolta) 259
 NEF (Nikon) 259
 ORF (Olympus) 259
 PEF (Pentax) 259
 RAF (Fuji) 259
 RAW (Leica, Panasonic) 259
 Red square 263
 SR2 (Sony) 259
 SRF (Sony) 259
 TIFF (PhaseOne) 259
 Unconverted RAW data file 286
 What is RAW data? 344
 X3F (Sigma) 259
 Realtime correction 56
 Realtime processing 83
 Realtime Histogram 293
 Red eye correction 43, 291
 Reduce window 108
 Reflective 70, 103
 Remove red eyes 291
 Renaming images 272
 Automatic re-naming while unloading 273
 Re-naming images automatically 273
 Rendering intent 63, 423
 Absolute colourimetric 424
 Perceptual 423
 Relative colourimetric 424
 Saturation 424
 Reopen SilverFast after processing 56
 Reopen SilverFast after scan 56
 Reset all 89
 Reset button 39, 76
 Resize box 37
 Resolution 77, 448
 Calculating the Scan Resolution 447
 Effective resolution 77
 Input resolution 444
 Interpolated resolution 77, 444, 448
 Optical resolution 96, 103, 444, 448
 Optimal scan resolution 447
 Optimum scan resolution for inkjet printers 450
 Output resolution 448
Scan resolution (dpi) 444, 447
Screen resolution (lpi) 446
Showing interpolated resolution 77
Showing scan resolution 77
Which resolution does SilverFast indicate? 448
Retouching of images 401
RGB (0-255 values) and CMYK (0 to 100% measurement) 53
RGB or CMYK 53
ROOT 28
Rotation 40, 282
 Rotate 90° clockwise 47
 Rotation Tool Palette 47
Round magazine 239

S
Saturation 160, 161, 228, 293
SC2G (selective colour to grey). See SilverFast-SC2G
Scaleable prescan 202
Scaling 76
 Fixing output width and height 78
 Fixing output width or height 78
 Proportional Scaling 78
Scaling factor 39
Scan CMYK 427
Scan faster 65
Scan frame parameters 39
 Activating Scan Frames 89
 Copying parameters into another scan frame 90
 Deleting a Scan Frame 89
 Loading and saving single scan frame parameters 86
 Moving and Copying of Scan Frames 90
Scan mode 70, 87, 242
Batch 242
Batch mode 70
Batch mode (file) 70, 243
Batch scan 87
Normal 70, 242
Normal (File) 70, 242
Scanner > Internal 62
Scanner interfaces 21
 FireWire 21
 SCSI 21
 USB 21
Scanner with different optical resolutions 103
Scanning concepts 443
Scan parameters 69
 Frame palette 71
ScanPilot 39, 40, 110
 Help texts 111
 Preferences dialogue 110
Scan resolution 39, 76, 77
 Scan Resolution for Scaled Images 77
 Showing interpolated resolution 76
 Showing scan resolution 76
Scan RGB 427
Scan start button 39
Scan type 39, 71
Scratch volume 55
Screening matrix 446
Screen resolution (lpi) 446
SCSI 21, 80
 SCSI ID 21, 80
Search for ... 269
Sector correction. See Selective colour correction
Selective colour correction 108, 158, 452
 Activation of selective colour correction 159
Administration of layers 159
CM12 159
CM6 159
Colour circle 160, 164
Colour matrix 159, 160, 165
Colour space zoom 159
Correcting an image selectively 162
Correction of 12 colours 174
HSL controls 160
Joining presets for a complete correction 166
Masks 159
 Brush tool 168
 Changing a mask 171
 Changing of a mask 170
 Creating masks 159
 De-activating a mask (no mask) 171
 Directly new redraw of an inverted mask 170
 Displaying an inactive mask area 172
 Hard or soft mask edges 169
 Inverse mask 170
 Lasso tool 168
 Mask edge size 169
 Move a mask 171
 New mask 168
 Polygon tool 168
 Removing a mask (delete) 172
 Selecting a mask tool 167
 Working with masks 167
Multi layers and masks 175
 Changing layers (switching) 177
 Creating new layers 176
 Deleting layers 177
 Moving of layers (change order) 178
Objective of selective colour correction 160
Preset 159, 165
Reset / Reset all 159
Selecting colours 164
Working with colour correction presets 166
Separation parameter 93
Serial number 29, 31
 Problems while entering the serial number 33
Setting 73, 86, 88
 Saving and Loading several Scan Frames as one
 Setting 88
Settings SilverFast / Photoshop 5.02 428
Settings SilverFast / Photoshop 6 431
Settings SilverFast / Photoshop 7 432
SFLauncher 22, 30
 Launching and activating SilverFast via SFLauncher 30
SF Statistic.txt 189
SFthumbs 266, 268
Shadow 108, 141, 149
 Setting shadow 124
Shadow cast 74
Shadow offset (darkest point) 59
Shadow triangle 121
SilverFast...SE... 133, 148, 155, 158, 187, 194,
 200, 205, 215, 219, 233, 369, 378, 393
 SilverFast...SEPlus 205
 SilverFastSE 253
SilverFastAACO 44, 399
 AACO 44
 Auto Adaptive Contrast Optimization. See Virtual
 Light Table (VLT)
 Saturation 400
 Shadow width 400
 Strength 400
SilverFastACR 179
 ACR control 159
 ACR slider 179
 ACR with auto-adjust 61
SilverFastAi... 253
 SilverFastAiStudio 253
SilverFastAiStudio 298, 405, 406, 409
Image settings 409
PrinTao (Extended print dialogue of SilverFastAiSoft) 405
PrinTao dialogue 406
SilverFastDC... 253, 258
 Album palette 267
 Album window 278
 Size of the album window 285
Alternative Opening of Images 256
Blue* or Green Dots within the Thumbnails 277
Browser- and Navigation Window 266
Cache 259
 Cache size 260
 Delete 260
Contact sheet 282
Conversion of RAW data files 263
Deleting images 285
Differences in Calibration Between a Scanner and a Digital Camera 437
Edit image comments 281
EXIF 284
Export albums 271
File browser 300
Hide/Show button 268
Image settings 292
Internal RAW data conversion profiles 261
IPTC 272
 IPTC image information in the album 283
JobManager 288
Magnifier 277
Manually selecting a camera specific ICC profile 262
Mark button 280
Open button 335
Overview window 268
Path for the Album Folder 259
Plus/Minus buttons 267
Presets palette 267
Preview mode 270
RAW data formats 259, 286
Re-naming dialogue 273
 Add IPTC to file 274
 Add the old index number to the name 274
 Image list 273
 Settings for new names 273
 Subsequent, Automatic Renaming 276
Remove red eyes 291
Search button 269
Show EXIF data 277
SilverFastDCPro 254
SilverFastDCProStudio 254
SilverFastDCSE 254
SilverFastDVCVT 254, 258
System requirements 259
Unloading Camera Storage Media 271
 Original 273
 Output 272
 Path 272
 Possible actions 275
 Preview 273
 Re-naming Example 275
 Renaming 272
 Transformation 272
 Workflow for unloading 271
SilverFastDCPro 259, 261, 298, 336
 DCPro open image 288
 IT8 calibration 336
SilverFastDCProStudio 298
SilverFastHDR 298
SilverFastHDR... 253, 255
 Alternative Opening of Images 256
 HDR open image 256
 HDR overview 256
 JobManager 288
 Renaming images. See SilverFastDC...
SilverFastHDRStudio 253, 255
Furnishing existing image data with HiRePP 339
HiRePP is especially significant for whom? 339
How does HiRePP function? 339
How much time will be saved? 338

Activating iSRD 394
Auto 395
Combining iSRD and SRD 396
Expansion correction 395
Expert mode 395
How does iSRD work? 393
Infrared channel display 397
iSRD automatic mode 394
iSRD manual mode 395
Layers 396
Masks in iSRD 397
Prescan 395
Threshold value 395
Using SRD and iSRD simultaneously (layer technology) 396
Which films can iSRD be used with? 394

Activating the JobManager 347
Adding all frames of the preview window 349
Adding a single frame 350
Changing Back a Job 356
Choosing the location for scans 353
Easy-edit mode 351
File format 353
File naming menu 354
Image overview of inserted film strip 348
Index 355
Job status 356
Leaving the processing mode 352

Output settings 353
Processing mode 351
Produce job entries 347
Selecting desired images 348
Starting the real scan processing 355
Workflow with film scanners 357

... with flat bed scanners 358
... with SilverFastHDR..., -DCPro... 359
Differences in working with scanners 359
Differences in JobManager between SilverFastHDR..., -DC..., and SilverFastAi... 346
Difference to working with film scanners 358

Error messages 366
How is JobManager different from batch scanning? 344

Image information 346
Job entry 344, 347, 361
Copying of complete job entries 362
Copying of job entry parameters 361
Deleting job entries 350
Processing job entries 351

Managing complete jobs 363
Multi job 363
Name of current job 346
Output options 346
Overview 345
Processing time - example 359
Purpose of the JobManager 343
Save as 363
Tools 346
Unconverted RAW data images 288
What is a Job? 344
What is the JobManager? 343
Workflow 364

SilverFastNegaFix 70, 233
SilverFastPhotoProof 298, 299, 331
SilverFastSC2G 180
Activating SC2G 180
Changing a colour image to grey 181
Changing the conversion factors 183
Saving / loading / deleting SC2G settings 182
SilverFastScanPilot 351
SilverFastSRD 41, 369
 Administration of layers 371
 Activate / Deactivate realtime correction 377
 Activating SilverFastSRD 375
 Activation of SilverFast dust and scratch removal 371
 Auto 375
 Continuity 387, 392
 Contrast 387, 391
 Control buttons 371
 Control menu 371
 Creating masks 371
 Defect recognition 379
 Defect size 379
 Defect type 379, 387, 388
 Delete Resources 385
 Detection 379
 Environment size 381, 386
 Expert mode 371, 386
 Extension 386
 Intensity 379, 380
 Layers 383
 Add layer 384
 Move layer 384
 Multiple layers 383
 Length 387, 389
 Longish scratches 387
 Manual correction 378
 Masks 371, 382
 Adding to mask 383
 Drawing a mask 382
 Drawing an inverted mask 383
 Mask tools 382
 Selection of mask tool 382
 Subtracting from mask 383
 Monitor modes 376
 Artifacts highlighted 377
 Corrected view 377
 Original view 377
 Navigator 376
 Navigator window 371
 Orientation 387, 388
 Output resolution 374
 Overview 371
 Presets 371
 Preview 375
 Red framed tile 376
 Save / Load settings 385
 Using SRD and iSRD simultaneously (layer technology) 396
 View of artifacts 371
 Width 387, 390
 Workflow 372, 373
 Yellow framed tile 376
Size adjustments / scaling 76
Skin tones 74
Snow 74
Soft mask 57
Softproof 91, 195, 416, 427
 Changing the separation parameter and control
 on the effect of shadow-build-up 93
 Softproof of CMYK colour separations 92
Sorting images 279
Special defaults palette 65
Special functions 39, 193
Specular highlights 130, 141
SRD. See SilverFastSRD
SRD (Smart Removal of Defects) 369
sRGB 416
Stand-Alone-Application. See SFLauncher
Start volume 21
Studio upgrade 253
Studio versions 401, 405
Super fine scan 67
Switching scanners 80
Switch SilverFast from RGB to CMYK 427
System requirements 19, 259
 Macintosh 19
 68k 19
 Windows 20

Tools palette 39, 108
 Tools 46, 108
Transparency 70, 103
TWAIN 25

Uneven scaling of images 77
Units of measurement 52, 53
Unload images 271
Unsharp masking (sharpness) 73, 199, 209
 Automatic USM 199
 Manual USM 199
 Manual USM in the expert dialogue 203
 Light contour / dark contour 203
 Over sharpening 203
 Shadows soft 204
 Sharpen from (only in negative-mode) 203
 Sharpening up to 203
 Matrix 200
 Pixel zoom 201
 Setting of the output parameters 199
 Strength 200
 Threshold 200
 USM dialogue with scaleable prescan 202
 Zooming into the Preview 201
Update reminder 33
Upgrade button 32
USB 21, 80
USBSCAN.SYS 21
User defined 74
User forum 27
USM 209, 374. See Unsharp masking (sharpness)
Vertical scaling 76
Virtual Light Table (VLT) 42, 255, 265
 Album window 278
 Arrangement of the VLT 265
 Blue* or green dots within the thumbnails 277
 Drag & Drop 279
 Edit name and image comment 281
 Export button 287
 JobManager 288
 Keyboard shortcuts 290
 Launching the Virtual Light Table (VLT) 265
 Magnifier 277
 PrinTao in VLT 299
 RAW data file 286
 Rotating and flipping images 282
 Size of the miniatures 281
 Sort images by drag & drop 279
 Sort images by marking 280
 Workflow example 289
VLT 255, 265, 340. See Virtual Light Table (VLT)

W
Welcome dialogue 26, 57
White Bbalance 292
Workflow of optimising images 113

X
XML files 318

Y

Z
Zoom 95, 97, 108, 184, 323

Densitometer 186
Editing a zoomed prescan 102
Magnifyer turns green 100
Magnifyer turns red 100
Zoom and difficult corrections 101
Zooming by click-dragging the mouse 99
Zooming by mouse click 97
Zooming by the zoom display popup 98
Zooming in the Prescan 95
Zooming in the prescan 184

SilverFast® Manual
7.5 Glossary

A

additive primaries
Red, green, and blue light that produce white light when added together.

ASCII
(American Standard Code for Information Interchange) A standard format for representing data or text in 8-bit chunks.

B

bit
(binary digit) The basic unit of information used by computers. It has two states: on or off.

bitmap
An image made up of a matrix of dots, or pixels.

byte
A unit of information equal to eight bits.

C

calibration
The process of setting equipment to a standard measure.

CCD
(Charge-Coupled Device) A light sensitive electronic chip used by scanners to measure light.

channel
One greyscale scan or one of the three RGB components making up a colour scan.

CLUT
(Colour Look-Up Table) A collection of most-often-used colours stored in a file or the System.
CMYK
(cyan, magenta, yellow, black) The subtractive primaries, also known as the process colours, used for colour printing.

Colour separation
Dividing a colour image into its four CMYK components for printing. (Also refers to the C, M, Y or K film negative from which printing plates are made.)

comp
(comprehensive) A test print used to evaluate layout and design.

compression
The process of decreasing a file size.

contrast
The range between the darkest and lightest areas in an image.

D

Daisy-chain
Link together sequentially as in linking multiple drives on the SCSI bus.

DCS
(Desktop Colour Separation) A format that contains five Post-Script files for each colour image.

densitometer
A hardware device to measure the amount of light transmitted through film to check the quality of imagesetter output. Also a software feature for measuring the grey and RGB levels of an on-screen image.

dithering
A halftoning process that uses clusters of dots rather than evenly spaced halftone cells.

dot gain
A printing defect in which halftone dots print larger than intended.

dpi

(dots per inch) The unit of measure for a printer’s output resolution. Also used for scanner resolution although ppi or spi is more accurate.

dropout colour

A colour that you set the scanner not to recognise.

E

EPS

(Encapsulated PostScript) A file format that can contain both scanned images and PostScript images along with printer information.

gamma

A measure of contrast that affects the midtones of an image.

gamma correction

Application of an algorithm to correct images for the fact that machines and people perceive tonal gradations differently.

G

GCR

GCR (Grey Component Replacement) A technique for reducing the amount of cyan, magenta, and yellow ink in an area and replacing them with black ink.

Greyscale

An image type made up of black, white, and grey pixels. Also, the range of greys in such an image measured in either percent black (0% is white and 100% is black) or grey levels (0 is black and 255 is white).
halftone
An image that uses different sized dots to represent light and dark areas.

highlights
The white and nearly white parts of an image.

histogram
A bar graph of the number of pixels for each grey or RGB value in an image. The histogram helps you evaluate the tones in an image.

HSB
(Hue, Saturation, Brightness) A colour model that defines a colour by specifying its hue, saturation, and brightness.

imagesetter
A printer that prints computer files at high resolution on photographic paper or film.

interpolation
Mathematical calculation the scanner performs to increase resolution.

JPEG
(Joint Photographic Expert Group) A compression algorithm for image files.
K

kilobyte
A unit of memory equal to 1024 bytes.

L

Line art
An image type made up of black and white pixels only.

lpi
(lines per inch) The unit of measure for halftone line screen frequency, or how many halftone cells occur in an inch.

LUT
(Look-Up Table) The table of colours a computer can display at a given time.

M

megabyte
A unit of memory equal to 1024 kilobytes.

memory
Computer hardware that can store information for later retrieval. This term can mean either hard disk memory or RAM memory. See also RAM.

midtones
The range of tones between the shadows and highlights of an image.

moire
Undesirable banding when scanning a halftone image due to the halftone screen interacting with the scanning grid.
overprinting
Printing over areas already printed, as opposed to using a knockout.

PICT
The native Macintosh file format for images.

pixel
(Picture Element) The smallest point in a scanned image. Line art pixels are black or white, greyscale pixels can be from grey level 0 to 255, and colour pixels can be from 0 to 255 for each RGB channel.

Plug-in module
Software that runs from within another application.

posterisation
Visible tonal banding in an image.

ppi
(pixels per inch) The unit of measure for a pixel based image, such as an image displayed on a monitor. Also used for scanner resolution.

prepress
The industry that prepares the film from which printing plates are made.

preview
A low-resolution version of an image that appears in the Silverfast®Ai Preview window to help you set the scan area and scanner controls.

proof
A representation of what a final printed piece will look like so that it can be evaluated before the expense of printing.
RAM
(Random Access Memory) The short term chip-based memory in a computer that applications load into to run.

RGB
(Red, Green, Blue) The additive primary colours used to display images on a monitor.

scan head
The part of the scanner containing fluorescent lamps that passes across an image.

screen frequency
See lpi.

SCSI
An acronym for Small Computer System Interface. An industry standard interface that provides high-speed access to peripheral devices.

SCSI chain
A group of SCSI devices linked to each other through SCSI peripheral interface cables and linked to the SCSI port on the computer through a SCSI system cable.

SCSI ID number
A number assigned to each SCSI device connected to a computer. The Macintosh itself is assigned ID 7. Other devices may use IDs 6 through 0, with 6 indicating the highest priority for communications and 0 the lowest priority.

service bureau
A business that specialises in printing computer files on an imagesetter.

shadows
The black and nearly black tones in an image.
stripping
The traditional process of assembling colour separations and typeset text by hand prior to making printing press plates.

subtractive primaries
The ink colours cyan, magenta, and yellow that add together to make black.

T

terminator
A device used in an SCSI chain to maintain the integrity of the signals passing along the SCSI chain. An SCSI chain should have one terminator at the start and end of the SCSI chain.

TIFF
(Tagged Image File Format) A file format for exchanging files between applications and computers.

trapping
A technique of overlapping abutting colours to compensate for printing press misregistration

U

UCR
(Undercolour Removal) A technique for reducing the amount of magenta, Yellow, and cyan ink in neutral areas of an image and replacing them with an appropriate amount of black ink.
virtual memory
A feature of some applications (and System 7) that lets you use hard disk space as RAM.